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Abstract

Purpose – This paper aims to develop and describe an improved process for determining the rate of
heat generation in living tissue.

Design/methodology/approach – Previous work by the authors on solving the bioheat equation
has been updated to include a new localized meshless method which will create a more robust and
computationally efficient technique. Inclusion of this technique will allow for the solution of more
complex and realistic geometries, which are typical of living tissue. Additionally, the unknown heat
generation rates are found through genetic algorithm optimization.

Findings – The localized technique showed superior accuracy and significant savings in memory
and processor time. The computational efficiency of the newly proposed meshless solver allows the
optimization process to be carried to a higher level, leading to more accurate solutions for the inverse
technique. Several example cases are presented to demonstrate these conclusions.

Research limitations/implications – This work includes only 2D development of the approach,
while any realistic modeling for patient-specific cases would be inherently 3D. The extension to 3D, as
well as studies to improve the technique by decreasing the sensitivity to measurement noise and to
incorporate non-invasive measurement positioning, are under way.

Practical implications – As medical imaging continuously improves, such techniques may prove
useful in patient diagonosis, as heat generation can be correlated to the presence of tumors, infections,
or other conditions.

Originality/value – This paper describes a new application of meshless methods. Such methods are
becoming attractive due to their decreased pre-processing requirements, especially for problems
involving complex geometries (such as patient specific tissues), as well as optimization problems,
where geometries may be constantly changing.
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Nomenclature
T ¼ field temperature
k ¼ thermal conductivity
r ¼ density
c ¼ specific heat
hm ¼ rate of metabolic heat generation
hb ¼ rate of heat generation due to blood

perfusion
t ¼ time
To ¼ arterial temperature

Wb ¼ blood perfusion term
UG ¼ total heat generation rate
x,y ¼ spatial coordinates
r ¼ Euclidean distance
a ¼ meshless expansion coefficients
x(r) ¼ radial basis function (RBF)
s ¼ RBF shape parameter
n ¼ outward normal vector
p ¼ current time level

1. Introduction
The Bioheat equation, which is a slight variation to the transient heat conduction
equation, is typically used to model heat transfer in living tissue, particularly in human
tissue. The form proposed by Pennes (1948) for the bioheat equation is as follows:

rc
›T

›t
¼ k72T þ hm þ hb ð1Þ

with hm and hb being heat generation rates from metabolic processes and blood
perfusion within the tissue, respectively. The rate of heat generation by perfusion is
typically found by the following expression:

hb ¼ W brbcbðTo 2 TÞ ð2Þ

where, rb and cb are the blood density and specific heat, respectively, and Wb is the
blood perfusion term. The total heat generation, UG is therefore given by:

UGðTÞ ¼ hm þW brbcbTo 2W brbcbT ð3Þ

where To is the constant arterial temperature. Jiji et al. (1984), Weinbaum and Jiji (1985)
and Weinbaum et al. (1997) have offered several improvements to this basic equation
over the years, which may better include the mechanism of counter-current heat
exchange. Any deficiencies with Pennes’ equation however, are not too substantial, as
discussed by Wissler (1998), and much work in this area still uses the standard form of
the bioheat equation as given by Pennes. The blood perfusion term, Wb, is often taken
as a constant value that allows a specific model to closely match experimental data. Jiji
et al. (1984) may have more correctly captured the true mechanism by which heat is
exchanged, but the generality of the perfusion term allows the standard form of the
bioheat equation, equation (1), to model the tissue heat transfer process quite well. This
term is often unknown, thus modeling results in literature are often shown over a range
of perfusion values (assuming this term is a constant). Since, this term is quite
important to the bioheat equation, it would be quite useful to be able to predict its value
precisely. From the equations above, and assuming a constant value for Wb, the total
rate of heat generation should have a linear relationship with temperature. Assuming a
linear relationship, UG(T) ¼ a þ bT, where b ¼ 2Wbrbcb and a ¼ hm þ WbrbcbTo.
Since, the heat generation rate coefficients, hm and Wb, are unknown, an inverse type
problem is encountered. This inverse problem can be solved if additional information
other than the typical boundary conditions needed for the direct solution are provided.
The additional information may be interior tissue temperature measurements, or
simply redundant boundary information (specifying both temperature and flux at the
boundary). Using this extra information an optimization process can be used for the
determination of the blood perfusion rate as well as the value of metabolic heat
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generation (assuming that the temperature of the arterial blood, To is known).
However, the circulation of blood is one of the main temperature regulatory processes
of the body, thus the blood perfusion term, Wb, should likely vary with tissue
temperature. Therefore, the heat generation rate should be considered a function of
tissue temperature. Liu and Xu (2000) use a linear form for Wb in their study using a
transient boundary element technique, but to be more general here, a polynomial
expression will be used for the variation of heat generation with temperature, given by:

UGðTÞ ¼
XNU

i¼0

aiT
i ð4Þ

where, NU is the order of the polynomial, and the a’s are the coefficient values
representing the variation of heat generation with temperature. It will be assumed that,
the metabolic rate of heat generation is constant with respect to temperature (changes
it this parameter over time are likely however, but will not be addressed here), and the
perfusion term will be used to capture the variation of heat generation rate with tissue
temperature.

2. Inverse problem solution using genetic algorithm optimization
Since, the rates of heat generation within the domain of interest are not known in this
particular problem, it cannot be solved directly. In order to solve the problem directly,
the heat generation rates must be assumed. The resulting solution field can then be
checked against the known data to test the accuracy of the solution. This process must
be repeated until an acceptable match of the solution field to the known data is
obtained. The idea of using an optimization procedure for determining such unknowns,
thus solving the inverse problem, is not new and is well discussed in literature. Since,
this problem is nonlinear, a gradient-based optimization scheme may not produce the
best possible results, due to the possible existence of local minima. In order to obtain a
globally optimized solution a discrete genetic algorithm (GA), will be employed. GA
have been shown to provide highly optimal solutions in numerous types of inverse
problems (Han et al., 2003; Pastorino et al., 2002; Wu et al., 2002; Divo et al., 2004).

The discrete GA operates over a specified range or solution space, by discretizing
the range using a set number of binary bits. The number of bits determines the
resolution of the solution, and is a large factor in the rate of convergence of the
procedure. The resolution is calculated through the simple relationship given below:

Res ¼
Range

2Nbit 2 1
ð5Þ

where Range is the size of the parameter search space and Nbit is the number of bits
used for the parameter. A fixed population size (50) is employed in this application of
the GA. The initial population is generated at random, where each individual consists
of a number of binary values (8 bits used herein). Each set of binary values corresponds
to one optimization parameter. Since, the goal of this work is to find the temperature
dependent rate of heat generation, the optimization parameters have been chosen as the
polynomial coefficients of the heat generation rates, in the form given by equation (4),
where NU is the pre-selected order of the polynomial and the a’s are the coefficient
values, which will be determined through the optimization process.
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Once the GA has created a population of individuals, the fitness for each individual
is calculated using the following expression:

Fitnessj ¼
XNIK

i¼1

jTKi 2 TIðxi; yiÞjj ð6Þ

where NIK is the number of known interior temperature measurements, TK are the
known interior temperatures, and TI(xi, yi)j are the temperatures computed from the
direct solver for the jth individual. Individuals then reproduce in a probabilistic
manner, based on their relative fitness value. This particular version of the GA uses a
“kill” routine, which erases the current population and regenerates a new random
population (the best individual is kept however), to ensure the GA does not stall in local
minima and produces a globally optimal solution. A “creep” mutation parameter is also
used to help the GA fine tune the solution once it has found an area of local
minimization.

The evaluation of the fitness function for each individual requires a direct solver for
the bioheat equation capable of handling the nonlinear generation term. The direct
solver chosen for this work is a meshless collocation method. It is also noteworthy that
the fitness of each individual is independent of the other individuals, therefore the
problem is solved quite efficiently using a parallel computation scheme. This allows
the fitness of multiple individuals to be evaluated simultaneously, significantly
reducing the computational time needed for the optimization process. Also, since only
the rate coefficients and fitness for each individual need to be passed to additional
processors, (this communication time is very small compared to the amount of
computational time required for each direct solution) the overall solution time scales
quite linearly with the number of processors.

3. Localized meshless solver
The major focus of this work is the inclusion of a new localized meshless method solver
for the bioheat equation. The initial development using the global meshless technique
is given by the authors (Erhart et al., 2005), and the details of the development of the
localized technique is given by Divo and Kassab (2005a). Several verification examples
are presented which demonstrate the accuracy and efficiency of the technique. The
method is also implemented for heat transfer with solidification by Zaloznik et al.
(2005). A major advantage of these so-called meshless methods is the ease of setup for a
problem. No elaborate mesh or grid is needed, only a simple distribution of points. The
localized technique requires the determination of an influence field, or topology, for
each collocation point however. It may be argued that these topologies represent a type
of mesh, thus making this technique not truly mesh free; the topologies however are
easily generated automatically and solutions are much less sensitive to the topology
configuration than to the element distribution in a FEM type solution. A typical
meshless problem geometry along with a representative topology is shown in Figure 1.
Such topologies are generated automatically by inclusion of all points within a certain
radial distance, which is determined at run time such that a pre-defined number of
points in each direction is included in each topology. The problem boundary conditions
are satisfied at the boundary points, while the governing equation is satisfied at all
interior points using a collocation technique.
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The meshless approximation is accomplished by locally expanding the temperature
over a small number NTP of independent points. These points may by in the domain
V(x, y) and/or on the boundary G(x, y):

Tðx; y; tÞ ¼
XNF

j¼1

ajðtÞxjðx; yÞ þ
XNP

j¼1

ajþNFðtÞPjðxÞ ð7Þ

where aj(t) is the transient expansion coefficient, for the current topology, NF is the
number of expansion functions while xj(x, y) denotes the expansion functions. An
additional, NP, polynomial functions Pj(x) are added to the expansion to guarantee that
constant and linear fields can be retrieved by the expansion exactly. The multiquadric
radial basis function (RBF) has been shown to accurately interpolate field variables by
Kansa and Hon (2000) and has proved quite sufficient in other works by Divo and
Kassab (2005b, 2006), and it is chosen as the expansion function in this work. The
inverse multiquadric RBF used herein is defined as:

xjðx; yÞ ¼ r2
j ðx; yÞ þ c2

h i21=2

ð8Þ

where rj is the Euclidean distance from (x, y) to (xj, yj), and c is the so-called shape
parameter which is chosen based on the guidance provided by Cheng et al. (2003). The
shape parameter c single-handedly dictates the behavior of, what is most important in
the meshless model: the derivatives of the expansion. For a specific expansion over a
specific set of data centers, the larger the shape parameter c, the smoother the
derivative field. However, the magnitude of the shape parameter c cannot be increased
without bound, as the expansion functions become flatter, and hence, the coefficient
matrix resulting of the collocation over data centers becomes ill-conditioned. For this
reason, a simple optimization search is employed to determine every value for the
shape parameter c used in every expansion over the different local topologies that
cover the entire field. An initial guess for c is based on the ratio of the average distance

Figure 1.
Typical meshless problem

geometry and topology
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xc
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between data centers in a topology to the number of points in the topology. A GA is
utilized to optimize the shape parameter value for each data center such that the
conditioning number of the interpolant matrix is as high as possible without degrading
the accuracy of the solution.

A forward difference approximation is now applied to estimate the time derivative
term in the bioheat equation, equation (1) above, resulting in the following
expression:

k72T ð pÞ þ hð pÞm þ hð pÞb ¼ rC
T ð pþ1Þ 2 T ð pÞ

Dt
ð9Þ

where p represents the time step. This expression is easily solved for the temperature
at the next time step, T ( pþ1), which yields:

T ð pþ1Þ ¼
Dt

rC
k72T ð pÞ þ hð pÞm þ hð pÞb

� �
þ T ð pÞ ð10Þ

The Laplacian term in this expression is found from the previous time step
temperatures using the RBF expansion above.

The real advantage of the localized collocation approach is a consequence of manner
in which the derivatives at the center of the topology are calculated (Divo and Kassab,
2005c, 2007). The collocation of the known (from previous time level) temperature, T,
for instance, at the points within the localized topology, leads to the following in
matrix-vector form:

{T} ¼ ½C�{a} ) {a} ¼ ½C�21{T} ð11Þ

The interpolation matrix [C] and the vector {T} are given by:

½C� ¼

x1ðx1Þ · · · xNFðx1Þ P1ðx1Þ · · · PNPðx1Þ

..

. ..
. ..

. ..
.

x1ðxNFÞ · · · xNFðxNFÞ P1ðxNFÞ · · · PNPðxNFÞ

P1ðx1Þ · · · P1ðxNFÞ 0 · · · 0

..

. ..
. ..

. ..
.

PNPðx1Þ · · · PNPðxNFÞ 0 · · · 0

2
66666666666664

3
77777777777775

;{T} ¼

Tðx1Þ

..

.

TðxNFÞ

0

..

.

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð12Þ

Then, to estimate the field variable derivatives at the data center, the linear Laplacian
differential operator L is applied to the localized expansion equation as:

LTðxcÞ ¼
XNF

j¼1

ajLx jðxcÞ þ
XNP

j¼1

ajþNFLPiðxcÞ ð13Þ

where, xc is the data center of the topology. Thus, in matrix-vector form:

LTc ¼ {Lc}T{a} ) LTc ¼ {Lc}T½C�21{T} ) LTc ¼ {Lc}T{T} ð14Þ
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with the vector {Lc} composed by:

{Lc}

Lx1ðxcÞ

..

.

LxNFðxcÞ

LP1ðxcÞ

..

.

LPNPðxcÞ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð15Þ

Therefore, evaluation of the field variable derivatives at everyone of the data centers xc is
provided by a simple inner product of two small vectors: {Lc} which can be pre-built and
stored and {T} which is the updated field variable around the topology of the data center xc.

In addition, when imposing the generalized boundary condition at the boundary data centers,
the derivative expansion can be easily implemented to retrieve the value of the temperature. In
particular, imposing a Robin condition that can be specialized to Dirichlet or Neumann:

h
›T

›n
þ gT ¼ b ð16Þ

Then, introducing the expansion for the derivatives yields:

h{›n}T þ {T} þ gT ¼ b ð17Þ

Then, the value of the field variable Tc at the data center xc of the topology can be retrieved
directly by re-arranging the equation above as:

Tc ¼ {G}T{l} ð18Þ

Where the vector {G} contains the interpolation information and boundary condition
parameters and therefore can be pre-build at setup stage, while the vector {l} contains the
boundary condition value and temeprature values inside the topology excluding the topology
center. Hence, the feature of the localized method of being able to retrieve the temperature and its
derivatives by simple vector-vector products is preserved.

The particular feature of the localized collocation method that allows the estimate of
the field variables and their derivatives by simple inner products of vectors (that can be
pre-built and stored) is precisely what makes this approach efficient. The multiquadric
functions need only be evaluated at a setup stage when these vectors are being built,
reducing the CPU burden of having to evaluate fractional powers and complicated
functions at every step of an iteration or time-marching scheme. In addition, the
memory demands of this approach are minimal, as no global collocation matrix is
allocated, and only very small vectors are stored for every data center. The local RBF
method thus offers termendous computational advantages in terms of data preparation
over global RBF meshless methods. As such, local meshless RBF is adopted as the
solution method for the inverse problem considered in this paper, while results from a
global RBF inverse method are reported as well for comparison.
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4. Numerical examples
Since, the methodology used for the determination of the heat generation has been
verified by the previous use of the global meshless method by the authors, the first
example below will demonstrate the efficiency and accuracy improvements of
employing the new localized meshless technique. For this first problem the blood
perfusion term, Wb, was assumed to have a quadratic relationship with tissue
temperature of the form:

W bðTÞ ¼ W b0
þW b1

T þW b2
T 2 ð19Þ

Figure 2 shows the geometric setup of this verification problem, including the
measurement locations. Table I provides a list of all the necessary properties for this
problem, and some additional properties which will be used in later problems. The
boundary conditions employed are convection at the skin surface (T1 ¼ 300 K,
h ¼ 5 W/m2K), and fixed temperatures at all other surfaces. We used a linear
interpolation of temperatures measured experimentally by Pennes (1948), who utilized
a thin wire thermocouple embedded in live human subject forearms. The problem is
time marched to steady from an arbitrary initial condition in all cases. It is understood
that such boundary conditions are not easily obtained in a realistic situation, so this
problem is being used as a proof of concept until a realistic 3D model can be developed
and appropriate boundary conditions imposed.

Figure 3 shows the temperature field solution for the known case (direct solution
using the chosen rate coefficients shown in Table II) and the inverse solution case for
the new local method. Additionally, the rate coefficients for both the global method and
the new local method are displayed in Table II. The similarities in the solution fields
shows that the local method also produces comparable results. Most noteworthy with

Material Density (kg/m3) Specific heat (J/kg K) Conductivity (W/m K)

Tissue 1,050 3,800 0.510
Bone 1,800 1,250 0.867

Sources: Jiji et al. (1984) and Weinbaum et al. (1997)

Table I.
Material properties used
for example problems

Figure 2.
Geometry of verification
problem
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these results is the computational time for the new method. For a single direct field
solution for this problem, the previous global method required 42.1 s, while the new
local method required only 0.234 s. This is a tremendous improvement in
computational efficiency for the new local meshless technique, bringing the
performance of the meshless method to the level of FEM and Finite Differencing in
terms of solution speed. Figure 4 shows a plot of the temperature dependent heat
generation rates for the chosen rate coefficient values as well as the inverse calculated

Figure 3.
Sensitivity fields for each

heat generation rate
coefficient

(a) hm sensitivity field (b) Wb0 
sensitivity field

(c) Wb1 
sensitivity field (d) Wb2 

sensitivity field

Low High

(e) General scale for sensitivity fields above

Known values Global inverse predicted values Local inverse predicted values

a0 440.00 449.02 447.06
a1 20.045 20.02627 20.07678
a2 20.0015 0.0000392 20.001373
a3 20.0000012 20.00000671 20.00000153

Table II.
Assumed and calculated

heat generation rate
coefficients for initial

example problem

Figure 4.
Known and predicted

(from inverse solution)
temperature fields for

initial verification problem

(a) Known rate solution field

(b) Local Meshless predicted rate solution field

T: 306.3 306.7 307.1 307.5 307.9 308.3 308.7 309.1

(c) Temperature scale for both fields
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(predicted) values, plotted over the temperature range for this verification example.
There does appear to be some difference in the curves for the previous global method,
but the local method produces even more comparable results. It should be noted that
the maximum generation rate error for the local method does not exceed 0.05 percent of
the total rate within the range of temperatures present, showing that the results are
very accurate. It should be noted that the location of the sensors is typically guided by
a sensitivity analysis (Erhart et al., 2005; Majchrzak and Mochnacki, 2006) to determine
the most appropriate placement of the interior measurements. Measurement locations
are sought such that the sensitivites there are far from zero and measurements are
physically possible. For example, the sensitivity maps for the variables of interest for
the first problem are shown in Figure 5.

Now that some confidence has been gained in the local technique, a more complex
problem can be analyzed. Figure 6 shows the geometry that will be used for the next
example problem. This problem is similar to the first case above, but now includes a
region of bone, making the problem non-homogeneous (Table I above for the properties
used for bone). Blood perfusion through the bone is likely not as prevalent as in

Figure 5.
Plot of generation rate vs
temperature for known
and predicted rate
coefficients
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Figure 6.
Geometry of example
problem with bone and
tissue regions
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the tissue, and little metabolic generation occurs in bone, thus the heat generation in
this area can be assumed negligible by comparison. This example may provide some
insight into the effects of the presence of bone on heat transfer rates.

Similar results are presented below for this problem. Figure 7 compares the known
generation function to the predicted for both the global and local methods. For both
methods all rates fall within 1 percent of the total rate over the temperature range of
interest, but the new local method is easily seen to provide more accurate results.
Figure 8 shows the entire temperature fields obtained for both the known and the
predicted generation rate coefficients using the local method. Very close agreement is
again obtained throughout the entire field. Figure 9 shows the residual error between
the predicted temperatures and the known temperatures at the measurement locations
(for the best individual) throughout the entire GA optimization process.

Figure 7.
Plot of heat generation
rate vs temperature for

known and predicted heat
generation rates
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Figure 8.
Known and predicted
temperature fields for

example with addition of
bone region

(a) Known rate solution field

(b) Local Meshless predicted rate solution field
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Now that confidence has been gained that the local meshless method and the inverse
methodology used herein can produce accurate rate predictions, we can investigate further
by adding some random error to our simulated measurement data. Measurement error
would always exist in this type of analysis so it is important that this technique is capable of
producing acceptable results even with such errors present. Two such trials were performed
using the geometry and boundary conditions for the first problem described above (tissue
only case). In one case a random error of ^0.1 K maximum was added to the simulated
measurement data at all measurement locations. In the second case an error of^0.25 K was
added. The resulting rate predictions are shown in Figure 10. At first glance it may appear
that the results for these cases are not acceptable, however if one looks at the percent error
for each case, it is seen that the rates are predicted within 5 percent for the first case and
9 percent for the second case. For many cases this level of accuracy would be sufficient.

5. Summary
Improvements in efficiency in the meshless collocation solver using a new localized
approach have been presented. An inverse solution procedure using a discrete GA,

Figure 10.
Plot of heat generation
rate vs temperature for
cases with simulated
measurement noise
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Figure 9.
Temperature difference
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genetic algorithm
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coupled with this meshless solver have been used for determining the unknown blood
perfusion rate and the metabolic rate of heat generation in living tissue (the bioheat
equation). Two examples have been shown which demonstrate the vast efficiency
improvements of this approach, and provide quantitative measurements of its
accuracy and effectiveness. Additionally, the effects of measurement noise have been
quantified for a simple case, and while the results are not perfect, they are within an
acceptable range for most engineering applications. Additional test cases are currently
under consideration to test for possible improvements and determine the effectiveness
for more complex geometries with measurement noise. Further investigations using
this technique will also include the use of boundary only data (avoiding the need for
invasive measurements), the extension to 3D, as well as the inclusion of spatial,
temporal, and temperature tissue property variation.
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